Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Free Radic Biol Med ; 219: 31-48, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614226

ABSTRACT

Hepatocellular carcinoma (HCC) is the predominant form of liver cancer, characterized by high morbidity and mortality rates, as well as unfavorable treatment outcomes. Tripartite motif-containing protein 47 (TRIM47) has been implicated in various diseases including tumor progression with the activity of E3 ubiquitin ligase. However, the precise regulatory mechanisms underlying the involvement of TRIM47 in HCC remain largely unexplored. Here, we provide evidence that TRIM47 exhibits heightened expression in tumor tissues, and its expression is in intimate association with clinical staging and patient prognosis. TRIM47 promotes HCC proliferation, migration, and invasion as an oncogene by in vitro gain- and loss-of-function experiments. TRIM47 knockdown results in HCC ferroptosis induction, primarily through CDO1 involvement to regulate GSH synthesis. Subsequent experiments confirm the interaction between TRIM47 and CDO1 dependent on B30.2 domain, wherein TRIM47 facilitates K48-linked ubiquitination, leading to a decrease in CDO1 protein abundance in HCC. Furthermore, CDO1 is able to counteract the promotional effect of TRIM47 on HCC biological functions. Overall, our research provides novel insight into the mechanism of TRIM47 in CDO1-mediated ferroptosis in HCC cells, highlighting its value as a potential target candidate for HCC therapeutic approaches.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Ferroptosis , Liver Neoplasms , Proteasome Endopeptidase Complex , Humans , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Ferroptosis/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Gene Expression Regulation, Neoplastic , Ubiquitination , Disease Progression , Ubiquitin/metabolism , Cell Line, Tumor , Animals , Mice , Cell Movement/genetics , Prognosis , Tripartite Motif Proteins , Neoplasm Proteins , Nuclear Proteins
2.
J Cell Mol Med ; 28(8): e18335, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652216

ABSTRACT

Management of hepatocellular carcinoma (HCC) remains challenging due to population growth, frequent recurrence and drug resistance. Targeting of genes involved with the ferroptosis is a promising alternative treatment strategy for HCC. The present study aimed to investigate the effect of dihydroartemisinin (DHA) against HCC and explore the underlying mechanisms. The effects of DHA on induction of ferroptosis were investigated with the measurement of malondialdehyde concentrations, oxidised C11 BODIPY 581/591 staining, as well as subcutaneous xenograft experiments. Activated transcription factor 4 (ATF4) and solute carrier family 7 member 11 (SLC7A11 or xCT) were overexpressed with lentiviruses to verify the target of DHA. Here, we confirmed the anticancer effect of DHA in inducing ferroptosis is related to ATF4. High expression of ATF4 is related to worse clinicopathological prognosis of HCC. Mechanistically, DHA inhibited the expression of ATF4, thereby promoting lipid peroxidation and ferroptosis of HCC cells. Overexpression of ATF4 rescued DHA-induced ferroptosis. Moreover, ATF4 could directly bound to the SLC7A11 promoter and increase its transcription. In addition, DHA enhances the chemosensitivity of sorafenib on HCC in vivo and in vitro. These findings confirm that DHA induces ferroptosis of HCC via inhibiting ATF4-xCT pathway, thereby providing new drug options for the treatment of HCC.


Subject(s)
Activating Transcription Factor 4 , Amino Acid Transport System y+ , Artemisinins , Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Ferroptosis/drug effects , Artemisinins/pharmacology , Artemisinins/therapeutic use , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Humans , Animals , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Male , Mice, Nude , Sorafenib/pharmacology , Sorafenib/therapeutic use , Female , Mice, Inbred BALB C
3.
J Cell Mol Med ; 28(8): e18234, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520214

ABSTRACT

Liver fibrosis is characterized by the activation and transformation of hepatic stellate cells (HSCs) induced by various injury factors. The degree of liver fibrosis can be significantly improved, but persistent injury factors present a significant therapeutic challenge. Hepatocytes are the most important parenchymal cell type in the liver. In this study, we explored the molecular mechanisms by which damaged liver cells activate HSCs through extracellular vesicles. We established a coculture model of LO2 and LX2 and validated its exosomal transmission activity. Subsequently, differentially expressed long noncoding RNAs (lncRNAs) were screened through RNA sequencing and their mechanisms of action as competing endogenous RNAs (ceRNAs) further confirmed using biological methods, such as FISH and luciferase assays. Damaged liver cells induced activation of LX2 and upregulation of liver fibrosis-related markers. Exosomes extracted and identified from the supernatant fraction contained differentially expressed lncRNA cytoskeleton regulator RNA (CYTOR) that competed with microRNA-125 (miR-125) for binding to glial cell line-derived neurotrophic factor (GDNF) in HSCs, in turn, promoting LX2 activation. MiR-125 could target and regulate both CYTOR and GDNF and vice versa, as verified using the luciferase assay. In an in vivo model, damaged liver extracellular vesicles induced the formation of liver fibrosis. Notably, downregulation of CYTOR within extracellular vesicles effectively inhibited liver fibrosis. The lncRNA CYTOR in exosomes of damaged liver cells is upregulated and modulates the expression of downstream GDNF through activity as a ceRNA, providing an effective mechanism for activation of HSCs.


Subject(s)
Exosomes , MicroRNAs , RNA, Long Noncoding , Humans , Hepatic Stellate Cells/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Exosomes/genetics , Exosomes/metabolism , Gene Expression Regulation , Hepatocytes/metabolism , Liver Cirrhosis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Luciferases/metabolism
4.
J Exp Clin Cancer Res ; 42(1): 329, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041128

ABSTRACT

BACKGROUND: Hedgehog-Gli1 signaling induces development of two common neurological features seen in pancreatic ductal adenocarcinoma (PDAC): peripheral neural invasion (PNI) and peripheral neural remodeling (PNR). However, the underlying molecular mechanisms in cancer cells and nerves within Gli1-derived PNR have not previously been comprehensively analyzed. METHODS: In this study, RNA sequencing was used to screen meaningful circRNAs in PNR. An in vitro model of PNR was subsequently constructed through a co-culture system comprising PDAC cells and murine dorsal root ganglia (DRG) (as the neuronal element), and the relevant mechanisms were explored using a series of molecular biology experiments. A subcutaneous nude mouse tumorigenesis model was established to further verify the occurrence of PNR that was detected in human PDAC samples. RESULTS: We first confirmed the molecular mechanisms of PNR development through crosstalk between exosomal circ-0011536 and DRG. In Gli1-overpressed PDAC, circ-0011536 is mainly secreted by exosomes. After being ingested by DRG, it can promote the activity of DRG by degrading miR-451a and upregulating the expression of VGF. Overexpression of Gli1 can accelerate the proliferation of subcutaneous tumors in mice and is closely related to the density of nerve plexuses, while downregulating circ-RNA inhibits tumor proliferation and reduces the density of nerve plexuses. In addition, TMA results confirmed that Gli1 overexpression significantly increased the expression of VGF and was closely associated with increased nerve plexus density. CONCLUSION: Hedgehog-Gli1-induced exosomal circ-0011536 promoted PNR via the miR-451a/VGF axis, thereby establishing that it may contribute to PDAC-associated nerve changes with activated Hedgehog signaling.


Subject(s)
Carcinoma, Pancreatic Ductal , MicroRNAs , Pancreatic Neoplasms , Humans , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Hedgehog Proteins/genetics , Zinc Finger Protein GLI1/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , Cell Line, Tumor , Nerve Growth Factors , Pancreatic Neoplasms
5.
Aging (Albany NY) ; 15(21): 11811-11830, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37851339

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a malignancy of the digestive system with high incidence rate and mortality, and reliable diagnostic and prognostic markers for CRC are still lacking. Glutamine metabolism is crucial to the occurrence and development of CRC. However, no research has systematically analyzed the biological role of glutamine metabolism-related genes (GMRGs) in CRC. METHODS: We downloaded gene expression data and clinical data of CRC patients from the TCGA database. The UCSC database downloads pan-cancer gene expression data and prognosis data. Characteristic GMRGs were screened out using differential analysis and two types of machine learning (SVM-REF and RandomForest). Single-cell RNA-sequencing data from CRC patients were downloaded from GEO data. ROC curve was used to evaluate the diagnostic value. Kaplan-Meier method and univariate Cox regression analysis were used to evaluate the prognostic value. The oncopredict package is used to calculate IC50 values for common drugs in CRC patients. RESULTS: A total of 31 differentially expressed GMRGs were identified, 9 of which were identified as characteristic GMRGs. Further evaluation of diagnostic and prognostic value finally identified GPT as the most important GMRGs in CRC. scRNA-seq analysis revealed that GPT is almost exclusively expressed in epithelial cells. GPT expression is closely related to the tumor microenvironment and can effectively distinguish the sensitivity of different CRC patients to clinical drugs. In addition, pan-cancer analysis showed that GPT is an excellent diagnostic and prognostic marker for multiple cancers. CONCLUSIONS: GPT is a reliable diagnostic, prognostic marker and therapeutic target in CRC.


Subject(s)
Colorectal Neoplasms , Glutamine , Humans , Oncogenes , Databases, Factual , Epithelial Cells , Colorectal Neoplasms/genetics , Prognosis , Tumor Microenvironment
6.
J Clin Transl Hepatol ; 11(6): 1341-1354, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37719959

ABSTRACT

Background and Aims: Liver ischemia-reperfusion (IR) injury is a common pathological process in liver surgery. Ferroptosis, which is closely related to lipid peroxidation, has recently been confirmed to be involved in the pathogenesis of IR injury. However, the development of drugs that regulate ferroptosis has been slow, and a complete understanding of the mechanisms underlying ferroptosis has not yet been achieved. Fucoidan (Fu) is a sulfated polysaccharide that has attracted research interest due to its advantages of easy access and wide biological activity. Methods: In this study, we established models of IR injury using erastin as an activator of ferroptosis, with the ferroptosis inhibitor ferrostatin-1 (Fer-1) as the control. We clarified the molecular mechanism of fucoidan in IR-induced ferroptosis by determining lipid peroxidation levels, mitochondrial morphology, and key pathways in theta were involved. Results: Ferroptosis was closely related to IR-induced hepatocyte injury. The use of fucoidan or Fer-1 inhibited ferroptosis by eliminating reactive oxygen species and inhibiting lipid peroxidation and iron accumulation, while those effects were reversed after treatment with erastin. Iron accumulation, mitochondrial membrane rupture, and active oxygen generation related to ferroptosis also inhibited the entry of nuclear factor erythroid 2-related factor 2 (Nrf2) into the nucleus and reduced downstream heme oxygenase-1 (HO-1) and glutathione peroxidase 4 (GPX4) protein levels. However, fucoidan pretreatment produced adaptive changes that reduced irreversible cell damage induced by IR or erastin. Conclusions: Fucoidan inhibited ferroptosis in liver IR injury via the Nrf2/HO-1/GPX4 axis.

7.
Biomed Pharmacother ; 167: 115538, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37729731

ABSTRACT

Tripartite motif (TRIM) family is assigned to RING-finger-containing ligases harboring the largest number of proteins in E3 ubiquitin ligating enzymes. E3 ubiquitin ligases target the specific substrate for proteasomal degradation via the ubiquitin-proteasome system (UPS), which seems to be a more effective and direct strategy for tumor therapy. Recent advances have demonstrated that TRIM genes associate with the occurrence and progression of hepatocellular carcinoma (HCC). TRIMs trigger or inhibit multiple biological activities like proliferation, apoptosis, metastasis, ferroptosis and autophagy in HCC dependent on its highly conserved yet diverse structures. Remarkably, autophagy is another proteolytic pathway for intracellular protein degradation and TRIM proteins may help to delineate the interaction between the two proteolytic systems. In depth research on the precise molecular mechanisms of TRIM family will allow for targeting TRIM in HCC treatment. We also highlight several potential directions warranted further development associated with TRIM family to provide bright insight into its translational values in hepatocellular carcinoma.

8.
Int J Gen Med ; 16: 1527-1540, 2023.
Article in English | MEDLINE | ID: mdl-37131870

ABSTRACT

Colorectal cancer (CRC) is one of the most common diseases in the world. Tumor immunotherapy is an innovative cancer treatment that acts by activating the human body's autoimmune system. Immune checkpoint block has been shown to be effective in DNA deficient mismatch repair/microsatellite instability-high CRC. However, the therapeutic effect for proficient mismatch repair/microsatellite stability patients still requires further study and optimization. At present, the main CRC strategy is to combine other therapeutic methods, such as chemotherapy, targeted therapy, and radiotherapy. Here, we review the current status and the latest progress of immune checkpoint inhibitors in the treatment of CRC. At the same time, we consider therapeutic opportunities for transforming cold to hot, as well as perspectives on possible future therapies, which may be in great demand for drug-resistant patients.

9.
Front Pharmacol ; 14: 1081980, 2023.
Article in English | MEDLINE | ID: mdl-36843944

ABSTRACT

Introduction: Colorectal cancer (CRC) is the fourth most common cancer worldwide, with high morbidity and mortality rates. In recent years, high-fat diet has been shown to increase CRC morbidity, highlighting the possibility of the application of hypolipidemic drugs for CRC treatment. In this study, we preliminarily evaluated the effects and mechnisms of ezetimibe against CRC through the blockage of lipid absorption in small intesine. Methods: In this study, CRC cell proliferation, invasion, apoptosis, and autophagy were evaluated using cellular and molecular assays. Fluorescent microscopy, and a flow cytometric assay were used to assess mitochondrial activity in vitro. A subcutaneous xenograft mouse model was used to evaluate the effects of ezetimibe in vivo. Results: We found that ezetimibe inhibited CRC cell proliferation, and migration, and facilitated autophage-associated apoptosis in HCT116 and Caco2 cells. Ezetimibe-induced mitochondrial dysfunction in CRC cells was found to be correlated with mTOR signaling activity. Discussion: Ezetimibe exhibits effects against CRC through the promotion of cancer cell death via mTOR signaling-dependent mitochondrial dysfunction, highlighting its potential value in CRC therapy.

10.
J Exp Clin Cancer Res ; 42(1): 6, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36604718

ABSTRACT

BACKGROUND: Sorafenib resistance is a key impediment to successful treatment of patients with advanced hepatocellular carcinoma (HCC) and recent studies have reported reversal of drug resistance by targeting ferroptosis. The present study aimed to explore the association of fatty acid synthase (FASN) with sorafenib resistance via regulation of ferroptosis and provide a novel treatment strategy to overcome the sorafenib resistance of HCC patients. METHODS: Intracellular levels of lipid peroxides, glutathione, malondialdehyde, and Fe2+ were measured as indicators of ferroptosis status. Biological information analyses, immunofluorescence assays, western blot assays, and co-immunoprecipitation analyses were conducted to elucidate the functions of FASN in HCC. Both in vitro and in vivo studies were conducted to examine the antitumor effects of the combination of orlistat and sorafenib and CalcuSyn software was used to calculate the combination index. RESULTS: Solute carrier family 7 member 11 (SLC7A11) was found to play an important role in mediating sorafenib resistance. The up-regulation of FASN antagonize of SLC7A11-mediated ferroptosis and thereby promoted sorafenib resistance. Mechanistically, FASN enhanced sorafenib-induced ferroptosis resistance by binding to hypoxia-inducible factor 1-alpha (HIF1α), promoting HIF1α nuclear translocation, inhibiting ubiquitination and proteasomal degradation of HIF1α, and subsequently enhancing transcription of SLC7A11. Orlistat, an inhibitor of FASN, with sorafenib had significant synergistic antitumor effects and reversed sorafenib resistance both in vitro and in vivo. CONCLUSION: Targeting the FASN/HIF1α/SLC7A11 pathway resensitized HCC cells to sorafenib. The combination of orlistat and sorafenib had superior synergistic antitumor effects in sorafenib-resistant HCC cells.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Sorafenib , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Fatty Acid Synthases/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Orlistat/pharmacology , Orlistat/therapeutic use , Sorafenib/pharmacology , Sorafenib/therapeutic use
11.
Cancer Sci ; 114(4): 1309-1323, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36000493

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignant diseases associated with a high rate of mortality. Frequent intrahepatic spread, extrahepatic metastasis, and tumor invasiveness are the main factors responsible for the poor prognosis of patients with HCC. Hypoxia-inducible factor 1 (HIF-1) has been verified to play a critical role in the metastasis of HCC. HIFs are also known to be modulated by small molecular metabolites, thus highlighting the need to understand the complexity of their cellular regulation in tumor metastasis. In this study, lower expression levels of oxoglutarate dehydrogenase-like (OGDHL) were strongly correlated with aggressive clinicopathologic characteristics, such as metastasis and invasion in three independent cohorts featuring a total of 281 postoperative HCC patients. The aberrant expression of OGDHL reduced cell invasiveness and migration in vitro and HCC metastasis in vivo, whereas the silencing of OGDHL promoted these processes in HCC cells. The pro-metastatic role of OGDHL downregulation is most likely attributed to its upregulation of HIF-1α transactivation activity and the protein stabilization by promoting the accumulation of L-2-HG to prevent the activity of HIF-1α prolyl hydroxylases, which subsequently causes an epithelial-mesenchymal transition process in HCC cells. These results demonstrate that OGDHL is a dominant factor that modulates the metastasis of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Neoplasms/pathology , Prognosis , Protein Stability
12.
Exp Ther Med ; 24(1): 463, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35747148

ABSTRACT

[This corrects the article DOI: 10.3892/etm.2021.10865.].

13.
J Cell Mol Med ; 26(10): 3031-3045, 2022 05.
Article in English | MEDLINE | ID: mdl-35429101

ABSTRACT

Aerobic glycolysis is a well-known hallmark of hepatocellular carcinoma (HCC). Hence, targeting the key enzymes of this pathway is considered a novel approach to HCC treatment. The effects of sodium butyrate (NaBu), a sodium salt of the short-chain fatty acid butyrate, on aerobic glycolysis in HCC cells and the underlying mechanism are unknown. In the present study, data obtained from cell lines with mouse xenograft model revealed that NaBu inhibited aerobic glycolysis in the HCC cells in vivo and in vitro. NaBu induced apoptosis while inhibiting the proliferation of the HCC cells in vivo and in vitro. Furthermore, the compound inhibited the release of lactate and glucose consumption in the HCC cells in vitro and inhibited the production of lactate in vivo. The modulatory effects of NaBu on glycolysis, proliferation and apoptosis were related to its modulation of hexokinase 2 (HK2). NaBu downregulated HK2 expression via c-myc signalling. The upregulation of glycolysis in the HCC cells induced by sorafenib was impeded by NaBu, thereby enhancing the anti-HCC effect of sorafenib in vitro and in vivo. Thus, NaBu inhibits the expression of HK2 to downregulate aerobic glycolysis and the proliferation of HCC cells and induces their apoptosis via the c-myc pathway.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Butyric Acid/pharmacology , Carcinoma, Hepatocellular/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation , Glycolysis , Hexokinase/genetics , Hexokinase/metabolism , Humans , Lactates/pharmacology , Liver Neoplasms/metabolism , Mice , Sorafenib/pharmacology
14.
J Healthc Eng ; 2022: 9479563, 2022.
Article in English | MEDLINE | ID: mdl-35075394

ABSTRACT

OBJECTIVE: To explore the factors affecting the adenoma risk level in patients with intestinal polyp and association. METHODS: The clinical data of 3,911 patients with intestinal polyp treated in our hospital from January 2018 to January 2021 were retrospectively analyzed, all patients accepted the histopathological examination, their risk of suffering from adenoma was evaluated according to the results of pathological diagnosis, and relevant hazard factors affecting adenoma risk level in them were analyzed by multifactor logistic regression analysis. RESULTS: The results of multifactor logistic analysis showed that male gender, age ≥60 years, number of polyps >3, diameter ≥2 cm, onset at colon, and physiologically tubulovillous adenoma were the hazard factors causing high-grade adenoma risk in patients with intestinal polyp. CONCLUSION: There are many risk factors causing high-grade adenoma in patients with intestinal polyp, and therefore, the screening for high-risk population shall be enhanced to reduce the potential of carcinomatous change in such patients.


Subject(s)
Adenoma , Colonic Polyps , Adenoma/epidemiology , Adenoma/pathology , Colon , Colonic Polyps/pathology , Humans , Intestinal Polyps/pathology , Male , Middle Aged , Retrospective Studies
15.
J Int Med Res ; 49(10): 3000605211053230, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34719989

ABSTRACT

Periampullary carcinoma refers to a malignant tumor within 2 cm of the duodenal ampulla. Primary ampullary carcinoma is very rare, accounting for only 0.2% of malignant gastrointestinal tumors. The small intestine accounts for 75% of the length of the gastrointestinal tract, and primary tumors in the small intestine account for only 2% of all gastrointestinal tumors. Here, we report the case of a duodenal ampullary tumor with malignant transformation of parapapillary polyps. The patient had both a primary ampullary tumor and high-grade intraepithelial neoplasia of juxtapapillary adenomatous duodenal polyps.


Subject(s)
Carcinoma in Situ , Carcinoma , Duodenal Neoplasms , Polyps , Carcinoma/pathology , Carcinoma in Situ/pathology , Duodenal Neoplasms/diagnostic imaging , Duodenal Neoplasms/pathology , Duodenal Neoplasms/surgery , Duodenum/pathology , Humans , Polyps/pathology
16.
Cell Cycle ; 20(23): 2507-2518, 2021 12.
Article in English | MEDLINE | ID: mdl-34658294

ABSTRACT

N6-methyladenosine (m6A) modification, the most abundant internal methylation of eukaryotic RNA transcripts, is critically implicated in RNA processing. There is extensive evidence indicating that long non-coding RNAs (lncRNAs) serve as key regulators of oncogenesis and tumor progression in humans. Through prior study has assessed that LIFR-AS1 plays a key role in various kinds of malignant tumors. However, the exact role of m6A induced LIFR-AS1 in pancreatic cancer (PC) and its potential molecular mechanisms remain largely unknown. In this study, we determined that PC cell lines and tumors exhibit increased LIFR-AS1 expression that correlates with larger tumor size, lymph node metastasis, and more advanced TNM stage. Functionally, loss-of-function studies indicated that LIFR-AS1 knockdown decreased the proliferation, migration, and invasion of PC cells in vitro. Mechanistically, we found that METTL3 induced m6A hyper-methylation on the 3' UTR of LIFR-AS1 to enhance its mRNA stability and LIFR-AS1 could directly interact with miR-150-5p, thereby indirectly up-regulating VEGFA expressions within cells. Through rescue experiments, we were able to confirm that the unfavorable impact of LIFR-AS1 knockdown on VEGFA /PI3K/Akt Signaling could be reversed via the inhibition of miR-150-5p expression. Together, these findings indicate that a noval m6A-LIFR-AS1 axis promotes PC progression at least in part via regulation of the miR-150-5p/VEGFA axis, indicating that this regulatory axis may be a viable clinical target for the treatment of PC.


Subject(s)
Adenosine/analogs & derivatives , Leukemia Inhibitory Factor Receptor alpha Subunit , Methyltransferases , MicroRNAs , Pancreatic Neoplasms , RNA, Long Noncoding , Vascular Endothelial Growth Factor A , Adenosine/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Humans , Leukemia Inhibitory Factor Receptor alpha Subunit/genetics , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction , Up-Regulation/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
17.
Exp Ther Med ; 22(6): 1430, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34707711

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a complex type of liver disease that represents an important global health threat. The mechanistic basis of this disease remains incompletely understood. The present study sought to explore whether microRNA (miR)-506-3p served a functional role in the onset and/or progression of NAFLD. To that end, high levels of glucose were used to treat liver cancer cell lines (HepG2 and Huh7) to model hepatic steatosis, and the expression levels of miR-506-3p and its downstream target genes were assessed. The cells of this hepatic steatosis model were transfected with miR-506-3p mimic molecules to explore the effect of miR-506-3p overexpression on cell viability, target gene expression and AMP-activated protein kinase (AMPK) phosphorylation. Via bioinformatics approaches, sirtuin 1 (SIRT1) was identified as a potential miR-506-3p target gene with relevance in NAFLD, and this interaction was confirmed via luciferase reporter assay. In the hepatic steatosis model of the present study, miR-506-3p expression level was significantly increased, whereas SIRT1 mRNA/protein levels and AMPK phosphorylation levels were markedly decreased. Transfection of the cells with miR-506-3p mimics led to significant SIRT1 downregulation, while miR-506-3p inhibitor molecules exhibited the opposite effect, with similar trends observed in the phosphorylation status of AMPK. These results suggested that miR-506-3p can inhibit SIRT1 expression and associated AMPK phosphorylation in HepG2 and Huh7 cells in an in vitro hepatic steatosis model system. These data indicated that the miR-506-3p/SIRT1/AMPK axis may be valuable as a therapeutic target in patients affected by NAFLD.

18.
Bioengineered ; 12(1): 5241-5252, 2021 12.
Article in English | MEDLINE | ID: mdl-34402722

ABSTRACT

Colon adenocarcinoma (COAD) is one of the most common types of malignancy and accounts for >3 million deaths worldwide each year. The present study aimed to evaluate the role of notum palmitoleoyl-protein carboxylesterase (NOTUM) in in vivo and in vitro, and to identify the relationship between NOTUM and the apoptosis of COAD. Moreover, the present study aimed to investigate whether NOTUM regulated Fas cell surface death receptor (FAS)-mediated apoptosis was affected by the Wnt signaling pathway. Gene expression profiling interactive analysis (GEPIA) was used to predict the potential function of NOTUM. Western blotting and reverse transcription-quantitative PCR were conducted to detect the protein and mRNA expression levels of NOTUM in different tissues or cell lines. The occurrence and development of COAD was detected after NOTUM knockdown lentivirus administration. The apoptosis of COAD was also observed. SKL2001 was applied to examine whether the role of NOTUM was regulated by Wnt. GEPIA analysis demonstrated that NOTUM expression in COAD tumor tissue was higher compared with in normal tissues. Pair-wise gene correlation analysis identified a potential relationship between NOTUM and Wnt. NOTUM protein and mRNA expression levels in colon carcinoma tissues and RKO cells were increased. NOTUM knockdown lentivirus serves a role in inhibiting COAD development by reducing tumor proliferation, reducing tumor size, and increasing the level of apoptosis in vitro and in vivo. Moreover, NOTUM could increase apoptosis in COAD, which was regulated by FAS, and SKL2001 blocked the progress of apoptosis after NOTUM regulation by NOTUM knockdown lentivirus in vitro and in vivo. Collectively, the present results suggested that NOTUM may be able to regulate the apoptosis of COAD, and that Wnt may be the down-stream target signaling of NOTUM in apoptosis.


Subject(s)
Apoptosis/genetics , Colonic Neoplasms , Esterases/genetics , Wnt Signaling Pathway/genetics , fas Receptor/genetics , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adult , Aged , Animals , Colon/metabolism , Colon/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Esterases/metabolism , Female , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , fas Receptor/metabolism
19.
PPAR Res ; 2021: 6642939, 2021.
Article in English | MEDLINE | ID: mdl-33777129

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) and part of their target genes have been reported to be related to the progression of hepatocellular carcinoma (HCC). The prognosis of HCC is not optimistic, and more accurate prognostic markers are needed. This study focused on discovering potential prognostic markers from the PPAR-related gene set. The mRNA data and clinical information of HCC were collected from TCGA and GEO platforms. Univariate Cox and lasso Cox regression analyses were used to screen prognostic genes of HCC. Three genes (MMP1, HMGCS2, and SLC27A5) involved in the PPAR signaling pathway were selected as the prognostic signature of HCC. A formula was established based on the expression values and multivariate Cox regression coefficients of selected genes, that was, risk score = 0.1488∗expression value of MMP1 + (-0.0393)∗expression value of HMGCS2 + (-0.0479)∗expression value of SLC27A5. The prognostic ability of the three-gene signature was assessed in the TCGA HCC dataset and verified in three GEO sets (GSE14520, GSE36376, and GSE76427). The results showed that the risk score based on our signature was a risk factor with a HR (hazard ratio) of 2.72 (95%CI (Confidence Interval) = 1.87 ~ 3.95, p < 0.001) for HCC survival. The signature could significantly (p < 0.0001) distinguish high-risk and low-risk patients with poor prognosis for HCC. In addition, we further explored the independence and applicability of the signature with other clinical indicators through multivariate Cox analysis (p < 0.001) and nomogram analysis (C-index = 0.709). The above results indicate that the combination of MMP1, HMGCS2, and SLC27A5 selected from the PPAR signaling pathway could effectively, independently, and applicatively predict the prognosis of HCC. Our research provided new insights to the prognosis of HCC.

20.
Cancer Manag Res ; 12: 7949-7960, 2020.
Article in English | MEDLINE | ID: mdl-32943929

ABSTRACT

INTRODUCTION: The purpose of this study was to evaluate the effects and mechanisms of the long noncoding RNA (lncRNA) MT1JP on hepatocellular carcinoma (HCC) in vitro. PATIENTS AND METHODS: Thirty pairs of tumor and adjacent normal tissues were collected from HCC patients. Tissue pathology and MT1JP expression were evaluated by hematoxylin and eosin staining and in situ hybridization (ISH), respectively. The correlation between MT1JP and HCC prognosis was investigated. MTT assays, cloning, flow cytometry, transwell assays, and wound-healing assays were used to evaluate the effects of MT1JP on HCC cell lines. RT-qPCR and Western blot were used to measure the relative mRNA and protein expression levels. RESULTS: The expression of MT1JP was downregulated in HCC tumor tissues compared with that in adjacent normal tissues, while the percent survival was significantly greater in the high MT1JP expression group than in the low MT1JP expression group (P=0.0238). In vitro, overexpression of MT1JP suppressed the proliferation, invasion, and migration, reduced colony cell number, increased cell apoptosis, and induced G1-phase cell cycle arrest in Bel-7402 and Huh-7 cells. Meanwhile, the mRNA and protein expression levels of RUNX3 and P21 were significantly upregulated, whereas those of MMP2 and MMP9 were significantly downregulated, in Bel-7402 and Huh-7 cells overexpressing MT1JP (all P<0.001). CONCLUSION: LncRNA MT1JP may function as a tumor suppressor in HCC. Overexpression of MT1JP suppressed HCC cell biological activities through the regulation of RUNX3.

SELECTION OF CITATIONS
SEARCH DETAIL
...